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Abstract

This work investigates parametric instabilities of in-plane bending vibrations of a thin elastic ring subject to forces from

discrete rotating springs of arbitrary number, spacing, and orientation. Several configurations are examined, including

systems with symmetric and asymmetric circumferential spring spacing, and systems with and without fixed springs. The

method of multiple scales is applied to analytically identify principal and combination instability boundaries as closed-

form expressions. Two different numerical approaches are used to verify the analytical results. The effects of different

system parameters on the instability boundaries are studied analytically: the bending stiffness of the ring, the number of

springs, and their stiffness, location, orientation and rotation speed. For several cases, well-defined properties for the

occurrence or suppression of instabilities are obtained as simple relations in the system parameters.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The present work addresses parametric excitation of bending vibrations in a stationary, thin ring subjected
to forces from rotating springs. The motivation is from planetary gears, which are commonly used in
automotive transmissions, helicopters, aircrafts and wind turbines. Planetary gear dynamics have historically
been analyzed using lumped-parameter models that take the ring, planets, carrier and the sun as rigid bodies
and the gear tooth meshes as springs. Recent studies, however, indicate that the deformable nature of the gear
bodies, especially the ring gear, must be incorporated to accurately model the mechanics. In planetary gears, it
is desirable to make the ring gear thin, due to power density and load sharing considerations. This makes the
ring flexible, and it deflects significantly due to mesh forces from the rotating planets. These meshes are
commonly modeled as elastic springs representing the gear tooth compliance. Bending vibrations of the ring
are parametrically excited by forces from the moving springs (ring-planet meshes), causing instability under
certain conditions. Similar vibration problems can occur in high-speed bearings where the outer and inner
races (rings) are parametrically excited by moving forces from rolling elements.

The vibration of rings has been an area of interest for a long time. The bending vibrations of a circular
ring were studied by Hoppe [1], and Love [2] presented frequency expressions for the in-plane bending,
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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out-of-plane bending, torsional and extensional vibrations of a circular ring. Considerable literature on the
free vibrations of thin and thick rings is available accounting for the effects of nonlinearities, shear
deformation, and rotatory inertia on in-plane and out-of-plane vibrations [3–6]. Simple frequency expressions
accounting for shear and rotatory inertia effects were developed by Kirkhope [7,8], and these were validated
against experiments of Kuhl [9] and Lincoln and Volterra [10]. For rings on uniformly distributed elastic
foundations, three-dimensional vibrations were studied by Rao [11]. Recently, Wu and Parker studied the
vibration of rings on arbitrarily spaced, discrete spring supports [12].

Little work on the vibration of rings subject to moving loads is found in the literature. Huang and Soedel
[13,14] presented closed-form solutions for the forced vibration of rotating rings subjected to harmonic and
periodic point forces and spatially distributed forces. They compared those results with the inverted problem
of a stationary ring with a moving point force. Metrikine and Tochilin [15] studied the vibrations of an elastic
ring with a time-varying, moving point force to model train wheels. While beam and disk vibrations with
moving springs have been studied extensively [16–21], there seems to be no prior work on the vibration of rings
subjected to forces from moving springs. A ring subjected to moving springs manifests as a parametrically
excited system because the stiffness operator of the governing equation changes as the spring locations change.
In this work, assuming that the moving spring stiffnesses are small compared to the bending stiffness of the
ring, perturbation methods are employed to analytically identify parametric instability boundaries as closed-
form expressions. For certain cases with symmetry, several instabilities are suppressed. The occurrence or
suppression of instabilities is governed by simple relations in the system parameters. Numerical results
validating the analytical results are presented.

2. Problem formulation

Fig. 1(a) shows a stationary, thin ring of uniform cross-section with mean radius r subject to forces at its
centroidal surface from M multiple spring-sets, j ¼ 1; 2; . . . ;M. Each spring-set consists of two springs of
constant stiffness k1j and k2j oriented in mutually perpendicular directions. The orientation angle bj

(0pbjop=2) is the angle between the spring k2j and the radial direction. The spring-sets are arbitrarily spaced
so that fj (0pfjo2p) is the angular coordinate of the jth spring-set measured from fixed E1 at initial time
t ¼ 0. All angles are measured positive in the counter-clockwise direction. The above system describes the
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Fig. 1. (a) Schematic of a rotating ring on multiple rotating spring-sets. (b) Definition of reference frames.
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most general case of discrete spring forces on a stationary ring. The spring-sets rotate around the ring with a
constant angular speed Osp. As they rotate, the orientation angles bj and the relative angular spacing
(fj � fj�1) between any two adjacent spring-sets do not change. Referring to Fig. 1(b), y is the angular
coordinate of any point on the ring in the inertial reference frame OE1E2, and j is the angular coordinate of
the same point in the rotating spring-fixed reference frame Oe1e2. The angular coordinates of a material point
on the ring are related by y ¼ jþ Ospt.

Only in-plane bending vibrations of the ring are considered in this work. The tangential and radial
displacements of a point on the centroidal axis of the ring are defined as û and ŵ, respectively. Depending on
the context, they are functions of y or j and t. Under the assumptions that the ring is thin, plane sections
remain plane, strain varies linearly in the radial direction, and the effects of Poisson’s ratio on the cross-
sectional area are negligible, the linear strain–displacement relations are [22–24]

eu ¼ e0u þ zk; e0u ¼
1

r
ðû0 þ ŵÞ; k ¼

ðû0 � ŵ00Þ

r2
, (1)

where e0u is the circumferential strain at the centroidal surface and z is measured positive outward from the
centroidal surface; k is the curvature change due to bending; and prime represents derivative with respect to y.
In Eq. (1), geometric nonlinearity is neglected as it is important for linear deformation of rings only in the
presence of initial stress fields, like those arising due to ring rotation or static loading [25]. The strain energy of
the ring is U ¼

R 2p
0

R
A

1
2
Ee2u rdAdy, where eu is the extensional circumferential strain, E is the Young’s modulus

of the ring, and A is the cross-sectional area. The spring strain energy is

V ¼

Z 2p

0

XM
j¼1

1

2
k1jðû cos bj � ŵ sin bjÞ

2
þ k2jðû sin bj þ ŵ cos bjÞ

2
� �

dðy� ðOsptþ fj � 2n̂jpÞÞdy,

where Dirac’s delta function dð�Þ specifies the angular locations of the rotating spring-sets and n̂j is an integer
(henceforth omitted) chosen such that 0pyo2p. The kinetic energy T ¼ ðrA=2Þ

R 2p
0 ð

_̂u
2
þ _̂w

2
Þ rdy, is assumed

due to translational velocities alone, and rotatory inertia is neglected for a thin ring. r is the density.
Hamilton’s principle yields the coupled equations of motion

rrA €̂u�
EA

r
ðû00 þ ŵ0Þ �

EI

r3
ðû00 � ŵIV

Þ

þ
XM
j¼1

dðy� Ospt� fjÞ k1j û cos
2bj þ k2j û sin

2bj

�
þ ðk2j � k1jÞŵ cos bj sin bj

�h i
¼ 0, ð2Þ

rrA €̂wþ
EA

r
ðû0 þ ŵÞ �

EI

r3
ðû000 � ŵIV

Þ

þ
XM
j¼1

dðy� Ospt� fjÞ k1j ŵ cos2bj þ k2j ŵ sin2bj

�
þðk2j � k1jÞû cos bj sin bj

�h i
¼ 0, ð3Þ

where I is the moment of inertia of the ring cross-section.
Inextensibility of the centroidal axis of the ring is assumed in this work. This assumption has been used

extensively in earlier research on the bending vibration of thin as well as thick rings, and the following results
are available in literature. The extensibility of the centroidal surface is shown to have negligible effect on the
bending natural frequencies after comparing the results with and without the inextensibility assumption to
experimental results [6,8–10]. For thin rings, the primary effect of extensibility is to generate an additional set
of high frequency (extensional) modes with negligible effect on the lower frequency (bending) modes [6,13].
This work investigates the in-plane bending of thin rings, and hence the inextensible centroidal surface
assumption is justified. In this case e0u ¼ 0 and û and ŵ are related by û0 þ ŵ ¼ 0. The coupled Eqs. (2) and (3)
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reduce to one equation for û given in non-dimensional form by

q2

qt2
ðu� u00Þ � ðuVI þ 2uIV þ u00Þ þ 2p e

XM
j¼1

ðc1juþ c2ju
0Þdðy� vspt� fjÞ

n o"

�
q
qy

XM
j¼1

ðc3juþ c4ju
0Þdðy� vspt� fjÞ

n o#
¼ 0, ð4Þ

where the dimensionless quantities are

u ¼
û

r
; t ¼ ot; o2 ¼

EI

rAr4
; vsp ¼

Osp

o
; e ¼

k

2pkb

kb ¼ EI=r3; k ¼ maxðk1j ; k2jÞ; j ¼ 1; 2; . . . ;M,

c1j ¼
1

k
ðk1j cos

2bj þ k2j sin
2bjÞ; c2j ¼ c3j ¼

1

k
ðk1j � k2jÞ cos bj sin bj

c4j ¼
1

k
ðk1j sin

2bj þ k2j cos
2bjÞ. ð5Þ

The important non-dimensional parameters are e, which represents the ratio of the stiffness of the spring-sets
to the bending stiffness kb of the ring, and the non-dimensional spring rotation speed vsp. The time-varying
spring forces parametrically excite the system as the angular locations of the spring-sets changes periodically.
Parametric instabilities occur for particular values of the magnitude (e) and frequency (vsp) of the time-varying
excitation. If the stiffness of all the springs are of the same order and small compared to the bending stiffness
of the ring, then c1j ; c2j ; c3j ; c4j are of order unity, and e is a small quantity. Under these assumptions,
perturbation methods are used to obtain closed-form approximations for the regions of parametric instability
in the vsp–e plane.

3. Parametric instability analysis

To capture principal and combination instabilities, a two-term Galerkin discretization is applied to Eq. (4)
using the expansion

uðy; tÞ ¼ cnðtÞe
iny þ cmðtÞe

imy þ cc; n; mX2, (6)

where cc represents the complex conjugate of all preceding terms. The restriction n;mX2 eliminates rigid body
motion. Defining the inner product as ha; bi ¼

R 2p
0

ab̄dy, substituting Eq. (6) into Eq. (4), and forming the
inner product of the resulting equation with each of the basis functions yields the coupled equations

d2cn

dt2
þ p2

ncn þ eqnfGnncn þHnne
�i2nvsptcn þ Gnme

iðm�nÞvsptcm þHnme
�iðmþnÞvsptcmg ¼ 0,

d2cm

dt2
þ p2

mcm þ eqmfGmmcm þHmme
�i2mvsptcm þ Gmne

�iðm�nÞvsptcn þHmne
�iðmþnÞvsptcng ¼ 0. ð7Þ

Gnm ¼
XM
j¼1

Bj
nm þ ixj

nm

� �
eiðm�nÞfj ¼

XM
j¼1

ðc1j þ nmc4jÞ þ iðmc2j � nc3jÞ
� �

eiðm�nÞfj ;

Hnm ¼
XM
j¼1

gj
nm þ ilj

nm

� �
e�iðmþnÞfj ¼

XM
j¼1

ðc1j � nmc4jÞ þ ið�mc2j � nc3jÞ
� �

e�iðmþnÞfj , ð8Þ

p2
n ¼

n2ðn2 � 1Þ2

1þ n2
; qn ¼

1

1þ n2
.

Gnm and Hnm depend on the spring-set parameters, and pn represents the non-dimensional natural frequency
for the bending vibrations of a free ring in the n nodal diameter mode (e�iny). In conjunction with Eq. (5) the
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following relations involving expressions (8) hold

Bj
nm ¼ Bj

mn ¼ Bj ; xj
nm ¼ �x

j
mn ¼ xj; xj

nn ¼ xj
mm ¼ 0; gj

nm ¼ gj
mn ¼ gj ; lj

nm ¼ lj
mn ¼ lj.

Although the only excitation frequency in Eq. (4) is vsp, Galerkin discretization to the modal coordinates in
Eq. (7) results in the two excitation frequencies ðmþ nÞvsp and ðm� nÞvsp, where mXn is assumed without loss
of generality. The spring-set force on the ring depends on the deflected shape of the ring (determined by m; n)
and the location of the spring-sets (determined by vsp). The OðeÞ terms in Eq. (7) arise from the projection onto
the m nodal diameter mode of the force the rotating springs exert when the ring deflects in the n nodal
diameter mode. Such a projection results in forces varying with the modulated frequencies ðmþ nÞvsp and
ðm� nÞvsp. Therefore, the system (7) may be viewed as having two different excitation frequencies ðmþ nÞvsp

and ðm� nÞvsp.

3.1. Conditions of parametric instability

Parametric instabilities arise when the non-dimensional spring rotation speed vsp is close to particular
combinations of the free ring natural frequencies pm and pn. The method of multiple scales applied to the
coupled equations (7) identifies these instabilities. With the definitions t0 ¼ t; t1 ¼ et for the different time
scales and derivatives with respect to each denoted as Dx ¼ q=qtx;x ¼ 0; 1, the time derivatives in Eq. (7)
transform to d=dt! D0 þ eD1 and d2=dt2 ! D2

0 þ 2eD1D0 þOðe2Þ. The solution is written as

cn ¼ cn0
ðt0; t1Þ þ ecn1

ðt0; t1Þ; cm ¼ cm0
ðt0; t1Þ þ ecm1

ðt0; t1Þ (9)

Substituting Eq. (9) into Eq. (7) and grouping terms of the same order in e gives

D2
0cn0
þ p2

ncn0
¼ 0; D2

0cm0
þ p2

mcm0
¼ 0, (10)

D2
0cn1
þ p2

ncn1
¼ � 2D0D1cn0

� qnðGnncn0
þHnne

�i2nvspt0cn0

þ Gnme
iðm�nÞvspt0cm0

þHnme
�iðmþnÞvspt0cm0

Þ,

D2
0cm1
þ p2

mcm1
¼ � 2D0D1cm0

� qmðGmmcm0
þHmme

�i2mvspt0cm0

þ Gmne
�iðm�nÞvspt0cn0

þHmne
�iðmþnÞvspt0cn0

Þ. ð11Þ

The solution to Eqs. (10) is

cn0
¼ Anðt1Þeipnt0 þ Bnðt1Þe�ipnt0 ; cm0

¼ Amðt1Þeipmt0 þ Bmðt1Þe�ipmt0 , (12)

where An;mðt1Þ;Bn;mðt1Þ are complex quantities. Insertion of Eqs. (12) into Eqs. (11) gives

D2
0cn1
þ p2

ncn1
¼ �i2pnD1An � qnGnnAn

� �
eipnt0 � qnHnnAne

�i½2nvspþpn�t0

� qnGnmAme
i½ðm�nÞvspþpm�t0 � qnHnmAme

�i½ðmþnÞvspþpm�t0

þ i2pnD1Bn � qnGnnBn

� �
e�ipnt0 � qnHnnBne

�i½2nvsp�pn�t0

� qnGnmBme
i½ðm�nÞvsp�pm�t0 � qnHnmBme

�i½ðmþnÞvsp�pm�t0 , ð13Þ

D2
0cm1
þ p2

mcm1
¼ �i2pmD1Am � qmGmmAm

� �
eipmt0 � qmHmmAme

�i½2mvspþpm�t0

� qmGmnAne
i½ðn�mÞvspþpn�t0 � qmHmnAme

�i½ðmþnÞvspþpn�t0

þ i2pmD1Bm � qmGmmBm

� �
e�ipmt0 � qmHmmBme

�i½2mvsp�pm�t0

� qmGmnBne
i½ðn�mÞvsp�pn�t0 � qmHmnBne

�i½ðmþnÞvsp�pn�t0 . ð14Þ

Terms leading to resonant response (secular terms) may arise in Eqs. (13) and (14) when

ðm� nÞvsp � pm þ pn, (15)
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which are summation type combination instabilities of the first (plus sign: mþ n) and second (minus sign:
m� n) kind, or when

ðm� nÞvsp � pm � pn, (16)

which are difference type combination instabilities of the first and second kind. The principal instability
corresponding to the nth mode is obtained from Eq. (15) with m ¼ n, giving

nvsp � pn. (17)

In arriving at Eqs. (15) and (16), mXn and vspX0 are assumed without loss of generality.
Combination instabilities of two kinds occur in the system because there are two related excitation

frequencies ðmþ nÞvsp and ðm� nÞvsp. Corresponding to each of these excitation frequencies, there is a possible
summation or difference type instability. In other words, there are two values of vsp that can potentially result
in a summation or difference type combination instability for any two modes.

3.2. Instability boundaries

The parametric instability when ðmþ nÞvsp � pm þ pn is considered. Let

ðmþ nÞvsp ¼ pm þ pn þ e ŝ, (18)

where ŝ is the detuning parameter. From Floquet theory, periodic solutions separate the stable and unstable
regions in a parameter space. Substitution of Eq. (18) into Eqs. (13) and (14) and elimination of terms leading
to unbounded, aperiodic response yields the solvability conditions

i2pnD1Bn � qnGnnBn � qnBmHnme
�iŝt1 ¼ 0,

i2pmD1Bm � qmGmmBm � qmBnHmne
�iŝt1 ¼ 0. ð19Þ

With the substitutions Bnðt1Þ ¼ xnðt1Þeiynðt1Þ, Bmðt1Þ ¼ xmðt1Þeiymðt1Þ, where xn; yn;xm; ym are real quantities,
non-trivial solutions to Eqs. (19) occur when

ŝ ¼
qn

2pn

XM
j¼1

Bj
nn þ

qm

2pm

XM
j¼1

Bj
mm �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qnqmD̂
pnpm

s
; D̂ ¼ Î

2
þ R̂

2
,

Î ¼
XM
j¼1

ðlj cos m̂j � gj sin m̂jÞ; R̂ ¼
XM
j¼1

ðgj cos m̂j þ lj sin m̂jÞ; m̂j ¼ ðmþ nÞfj. ð20Þ

Hence, summation combination instability boundaries of the first kind are given by

vsp ¼
ðpm þ pnÞ þ eŝ
ðmþ nÞ

. (21)

The nth mode principal instability boundaries are given by vsp ¼ ð2pn þ eŝÞ=2n.
Turning to the parametric instability when ðm� nÞvsp � pm þ pn, let

ðm� nÞvsp ¼ pm þ pn þ e ~s. (22)

Substitution of Eq. (22) into Eqs. (13) and (14) gives the conditions for elimination of secular terms

� i2pnD1An � qnGnnAn � qnBmGnme
i ~s t1 ¼ 0,

i2pmD1Bm � qmGmmBm � qmAnGmne
�i ~s t1 ¼ 0. ð23Þ
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Proceeding as in Eqs. (19)–(21), the summation combination instability boundaries of the second kind are

vsp ¼
ðpm þ pnÞ þ e ~s
ðm� nÞ

,

~s ¼
qn

2pn

XM
j¼1

Bj
nn þ

qm

2pm

XM
j¼1

Bj
mm �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qnqm

~D
pnpm

s
; ~D ¼ ~I

2
þ ~R

2
,

~I ¼
XM
j¼1

ðBj cos ~mj þ xj sin ~mjÞ; ~R ¼
XM
j¼1

ðBj cos ~mj � xj sin ~mjÞ; ~mj ¼ ðm� nÞfj . ð24Þ

It can be shown mathematically that difference type instabilities cannot occur when ðm� nÞvsp � pm � pn

because such a condition yields complex solutions for the detuning parameter.
The full range of possible parametric instability regions for a stationary ring with multiple discrete rotating

spring-sets is captured in Eqs. (21) and (24) as relations in the spring rotation speed vsp and the spring to ring
bending stiffness ratio e.

4. Numerical solution

Numerical verification of the analytical solution is performed using two approaches. In the first method,
Galerkin discretization of Eq. (4) with basis functions as e�iny yields a time-varying state matrix form _xðtÞ ¼
PðtÞxðtÞ with period T ¼ 2p=vsp. Applying Floquet’s theorem, the monodromy matrix E for the system is
constructed by time integration over one period, and the eigenvalues of E dictate the stability of the system. By
computing the monodromy matrix eigenvalues for a range of e and vsp, the regions of instability are obtained
in the vsp–e parameter plane. This method is computationally intensive because of the numerical time
integration, especially for small vsp and so long period T .

Alternatively, the system can be analyzed in a spring-fixed reference frame, allowing much more
computationally efficient evaluation of system stability. The equation of motion in the spring-fixed reference
frame is obtained using the transformation j ¼ y� vspt as

q
qt
� vsp

q
qj

� 	2

ðu� u00Þ � ðuVI þ 2uIV þ u00Þ þ 2p e
XM
j¼1

ðc1juþ c2ju
0Þdðj� fjÞ

n o"

�
q
qj

XM
j¼1

ðc3juþ c4ju
0Þdðj� fjÞ

n o#
¼ 0, ð25Þ

where prime denotes partial derivative with respect to j. In this reference frame, the angular locations of the
spring-sets do not change with time, and Eq. (25) is not a parametrically excited system. Instead, the self-
adjoint system in Eq. (4) changes to a gyroscopic one as a result of the term �2vspqðu0 � u000Þ=qt, which has a
skew-self adjoint spatial operator. Galerkin discretization of Eq. (25) with basis functions e�inj now yields a
time-invariant state matrix form _xðtÞ ¼ QxðtÞ. The stability of the system is dictated by whether or not an
eigenvalue of Q has a positive real part. By computing Q and its eigenvalues for ranges of e and vsp (or other
parameters), the regions of instability are obtained.

5. Results and discussion

The analytical and numerical results for the stability boundaries are plotted in the vsp–e plane. Fig. 2 shows
these results for the case of one radial rotating spring. The analytical stability boundaries are obtained using
Eqs. (20), (21) and (24). Only the first three bending modes, namely, modes with 2, 3 and 4 nodal diameters are
considered. The numerical instability regions are also computed taking the first three modes (starting with
n ¼ 2) to discretize the tangential displacement in Eqs. (4) and (25). The agreement between the analytical and
numerical results is evident, even for relatively large values of the spring stiffness to bending stiffness ratio e.
Both numerical methods were used to verify the analytical results, and they yield the same instability regions.
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The convergence of the numerical results is verified in Fig. 3. The real and imaginary parts of the
eigenvalues of Q are shown for e ¼ 1. Parametric instabilities occur when the real part of an eigenvalue
becomes positive. From Fig. 3(a), a one-term approximation captures principal instability due to that mode.
The width of the instability region in Fig. 2 when e ¼ 1 corresponds well with the width of the region where the
real part is positive in Fig. 3(a). A two-term approximation captures principal and combination instabilities
that arise from the two modes under consideration (Fig. 3(a)). Increasing the number of terms does not
significantly change the width of the unstable regions obtained using fewer terms (Fig. 3(b)), but new principal
and combination instabilities appear corresponding to the additional modes in the discretization. To compare
the analytical results that arise from the first n nodal diameter bending modes, an approximation with n terms
in the numerical scheme is sufficiently accurate. The analytical results presented here show instabilities arising



ARTICLE IN PRESS

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2

0

5

10

15

vsp

R
e(

λ)
Im

(λ
)

P
P

C

(a)

0 1 2 3 4 5
vsp(b)

-0.2

-0.1

0

0.1

0.2

0

5

10

15

R
e(

λ)
Im

(λ
)

P

P
P

C
C C

P

CC

Fig. 3. Real and imaginary parts of the eigenvalues of matrix Q with one radial rotating spring with e ¼ k=2pkb ¼ 1;
k11 ¼ 0; k21 ¼ k; b1 ¼ 0�. P: principal instability, C: combination instability. (a) � � �, one-term approximation; —, two-term

approximation. (b) Ten-term approximation.

S.V. Canchi, R.G. Parker / Journal of Sound and Vibration 293 (2006) 360–379368
from the first three bending modes (2, 3 and 4 nodal diameters), and these are compared against numerical
results using the first three terms for approximation.

Fig. 3 gives additional information on the nature of instability as observed from the spring-fixed reference
frame. The real parts of the eigenvalues become positive (unstable) when two imaginary eigenvalues coalesce.
If the imaginary eigenvalues coalesce at zero, divergence instability occurs, and if they coalesce at a non-zero
value, flutter instability occurs. Principal instabilities are always of the divergence kind, and combination
instabilities are of the flutter kind.
5.1. Effect of number of spring-sets, symmetry and asymmetry

The width of the parametric instability regions are governed by D̂ and ~D defined in Eqs. (20) and (24). Their
values depend on the parameters of the spring-sets, namely, the number of spring-sets, the stiffness of the
individual springs, their orientation and their spacing. Symmetry is common in physical systems and is often
exploited. In many cases, symmetry has inherent advantages, including in planetary gears. It is interesting as
well as useful to study how symmetry affects the parametric instabilities.

Parametric instability regions appear only if D̂ or ~D are non-zero. When all the spring-sets are identical with
the same individual spring stiffnesses and orientation angles, then Bj ¼ B; xj

¼ x; gj ¼ g; and lj
¼ l for

j ¼ 1; 2; :::;M. In this case,

D̂ ¼ ðg2 þ l2Þ
XM
j¼1

cosðmþ nÞfj

" #2
þ

XM
j¼1

sinðmþ nÞfj

" #28<
:

9=
;, (26)
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~D ¼ ðB2 þ x2Þ
XM
j¼1

cosðm� nÞfj

" #2
þ

XM
j¼1

sinðm� nÞfj

" #28<
:

9=
;. (27)

If, in addition, the spring-sets are equally spaced, then

fj ¼
2pðj � 1Þ

M
; j ¼ 1; 2; :::;M. (28)

The following trigonometric identities hold for integer values of s

XM
j¼1

sin
2pðj � 1Þs

M


 �
¼ 0;

XM
j¼1

cos
2pðj � 1Þs

M


 �
¼

0; s=Mainteger;

M; s=M ¼ integer:

(
(29)

Use of Eqs. (28) and (29) in Eqs. (26) and (27) yields that D̂ is non-zero only when the nodal diameters m

and n are related to the total number of spring-sets M by

mþ n ¼ sM ; s ¼ 1; 2; 3; ::. (30)

~D is non-zero only when

m� n ¼ sM ; s ¼ 1; 2; 3; ::. (31)

For the case of identical and equally spaced spring-sets (referred to as the symmetric case), symmetry of the
system suppresses certain parametric instabilities (many, in fact), both principal and combination. Principal
and combination instabilities of the first kind appear only for those modes whose nodal diameters satisfy
Eq. (30), and combination instabilities of the second kind appear only for those modes whose nodal diameters
satisfy Eq. (31).

To illustrate these results, examples with two and three radial springs are presented considering the 2, 3 and
4 nodal diameter modes. For two radial rotating springs, Fig. 4(a) shows the instabilities for the symmetric
case. In comparison to the asymmetric case (identical, unequally spaced spring-sets) in Fig. 4(b), some
instabilities are suppressed by symmetry. In fact, the only instabilities that appear in the symmetric case are
principal instabilities of the 2, 3 and 4 nodal diameter modes, and summation combination instability (first
and second kinds) due to interaction of the 2 and 4 nodal diameter modes. These results verify the predictions
in Eqs. (30) and (31). Similarly, considering the case of three radial springs, the only instabilities that appear in
the symmetric case (Fig. 5(a)) are the principal instability due to the three nodal diameter mode, and the
combination instability of the first kind from interaction of the two and four nodal diameter modes. In the
asymmetric cases of identical, unequally spaced spring-sets (Fig. 5(b)), or non-identical, equally spaced spring-
sets (Fig. 5(c)), all possible instabilities occur.
5.2. Parametric study

The analytical solution shows how parametric instability regions change due to a variation in the system
parameters. As examples, the effects of orientation angle (b), stiffness angle (a) and modulation angle (U) are
considered. For the case of one rotating spring (k11 ¼ 0; k21 ¼ k), the orientation angle is varied from b ¼ 01
(radial) to b ¼ 901 (tangential), and the result is shown in Fig. 6. Larger instability regions appear when the
same spring is oriented in the radial direction versus the tangential direction. This result is verified starting
with Eq. (5), which gives c1j ¼ c2j ¼ c3j ¼ 0; c4j ¼ 1 when b ¼ 01, and c1j ¼ 1; c2j ¼ c3j ¼ c4j ¼ 0 when b ¼ 901.
Accordingly, from Eq. (8), xj

¼ lj
¼ 0; Bj ¼ nm; gj ¼ �nm when b ¼ 01 ; and xj

¼ lj
¼ 0; Bj ¼ 1; gj ¼ 1

when b ¼ 901. The instability region width depends on the magnitudes of D̂ and ~D in Eqs. (20) and (24),
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Fig. 4. Parametric instability regions for two identical rotating radial springs with k1j ¼ 0; k2j ¼ k; bj ¼ 0�. (a) Symmetric case with

equally spaced rotating radial springs. (b) Asymmetric case with unequally spaced rotating radial springs with f1 ¼ 0�;f2 ¼ 160�. —,

principal and combination instabilities of first kind; - - -, combination instabilities of second kind; nnn, numerical solution.
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which simplify to

D̂ ¼ ðgjÞ
2

XM
j¼1

cos m̂j

 !2

þ
XM
j¼1

sin m̂j

 !2
2
4

3
5,

~D ¼ ðBjÞ
2

XM
j¼1

cos ~mj

 !2

þ
XM
j¼1

sin ~mj

 !2
2
4

3
5. ð32Þ

Substituting values of gj and Bj for tangential and radial spring orientations into Eqs. (32), recognizing that m̂j

and ~mj are independent of b, and utilizing nmX441 yields that D̂ and ~D are both larger when b ¼ 0� (radial
springs).

The stiffness angle is defined as aj ¼ tan�1 k2j=k1j

� �
(0�pajp90�), so that k1j ¼ kj cos aj, k2j ¼ kj sin aj

where kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1j þ k2

2j

q
. Together, kj and aj quantify the effective stiffness along the directions in-line and

perpendicular to the axis defined by the orientation angle bj. When bj ¼ 0�, purely tangential and purely radial
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Fig. 5. Parametric instability regions. (a) Symmetric case of three identical and equally spaced rotating radial springs with k1j ¼ 0; k2j ¼

k; bj ¼ 0�. Asymmetric cases: (b) Three identical but unequally spaced rotating radial springs with k1j ¼ 0; k2j ¼ k; bj ¼ 0�;f1 ¼ 0�;
f2 ¼ 110�; f3 ¼ 250�. (c) Three non-identical but equally spaced rotating radial springs with k21 ¼ k23 ¼ k12 ¼ k; bj ¼ 0�. —, principal

and combination instabilities of first kind; - - -, combination instability of second kind; nnn, numerical solution.
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Fig. 7. Effect of stiffness angle on parametric instability regions: one rotating spring-set with k1 ¼ k; b ¼ 0�.

Fig. 6. Effect of spring orientation angle on parametric instability regions: one rotating spring with k11 ¼ 0; k21 ¼ k.
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springs correspond to aj ¼ 0� and 901, respectively. Considering a single rotating spring-set defined by k; a,
Fig. 7 shows the instability zones for different values of a with bj ¼ 0�. As obtained previously, the instability

regions are larger for radial orientation of the spring compared to tangential orientation. Interestingly, for
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bj ¼ 0�, the different combination instabilities of the first kind, including principal instabilities, vanish for

particular values of a, as indicated in Fig. 7 by closing of the instability regions in the vsp–e plane. The

analytical expressions (5), (8) and (20) show that lj
¼ 0 when bj ¼ 0�. Furthermore if all the spring-sets have

the same stiffness angle aj ¼ a, then

D̂ ¼
XM
j¼1

gj cos m̂j

 !2

þ
XM
j¼1

gj sin m̂j

 !2

¼
cos a� nm sin a
max k1j ; k2j

� �
 !2 XM

j¼1

kj cos m̂j

 !2

þ
XM
j¼1

kj sin m̂j

 !2
2
4

3
5. ð33Þ

Combination instabilities of the first kind due to the n and m nodal diameter modes vanish if tan a ¼ 1=nm.
Consequently, principal instabilities corresponding to 2 and 3 nodal diameter modes vanish when a ¼ 14:03�

and 6.341, respectively, and the combination instability due to their interaction vanishes when a ¼ 9:46�

(Fig. 7). These results hold for arbitrary spacing of spring-sets with different kj, so long as bj ¼ 0�, and the

stiffness angles for all the spring-sets are the same. Combination instabilities of the second kind do not exhibit

similar behavior because there is no value of a (0�pap90�) for which ~D ¼ 0.
Consider spring-sets that are placed in diametrically opposed pairs. Such a configuration is of practical

importance in planetary gear systems where equal planet spacing is not possible due to assembly requirements.
They are placed in diametrically opposed pairs because of bearing force and load sharing considerations. The
effect of angular spacing between the diameters on the parametric instabilities is shown in Fig. 8 for two pairs
of diametrically opposed radial springs (e ¼ 1) located at f1 ¼ 0�; f2 ¼ 90� þ U�;f3 ¼ 180� and
f4 ¼ 270� þ U�, where U is the modulation angle. The width of the instability regions vary with the
modulation angle and are plotted for the range U ¼ 0� to 901. Some instabilities vanish entirely for
diametrically opposed pairs of spring-sets. For those that appear, some instabilities vanish depending on the
value of the modulation angle U. To explain this analytically, consider the expressions for D̂; ~D from Eqs. (26)
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Fig. 8. Effect of modulation angle on parametric instability boundaries for two pairs of diametrically opposed radial springs with

e ¼ k=2pkb ¼ 1; k1j ¼ 0; k2j ¼ k; bj ¼ 0�;f1 ¼ 0�; f2 ¼ 90� þ U�; f3 ¼ 180�; f4 ¼ 270� þ U�.
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and (27) for identical, diametrically opposed spring-sets

D̂ ¼ ðg2 þ l2Þ
XM=2

j¼1

cos ðmþ nÞfj

h i
þ cos ðmþ nÞfj þ ðmþ nÞp

h i� " #28<
:

þ
XM=2

j¼1

sin ðmþ nÞfj

h i
þ sin ðmþ nÞfj þ ðmþ nÞp

h i� " #29=
;

¼

0 if ðmþ nÞ is odd;

ðg2 þ l2Þ 2
PM=2

j¼1

cos ðmþ nÞfj

h i� " #28<
: þ 2

PM=2

j¼1

sin ðmþ nÞfj

h i� " #29=
;; if ðmþ nÞ is even;

8>>><
>>>:

ð34Þ

~D ¼ ðB2 þ x2Þ
XM=2

j¼1

cos ðm� nÞfj

h i
þ cos ðm� nÞfj þ ðm� nÞp

h i� " #28<
:

þ
XM=2

j¼1

sin ðm� nÞfj

h i
þ sin ðmþ nÞfj þ ðm� nÞp

h i� " #29=
;

¼

0 if ðm� nÞ is odd;

ðB2 þ x2Þ 2
PM=2

j¼1

cos ðm� nÞfj

h i� " #28<
: þ 2

PM=2

j¼1

sin ðm� nÞfj

h i� " #29=
; if ðm� nÞ is even:

8>>><
>>>:

ð35Þ

Hence, for identical and diametrically opposed spring-sets, parametric instabilities cannot occur if m� n is
odd. This is confirmed from Fig. 8. If m� n is even, however, D̂ or ~D may become zero depending on the
values of m; n; fj and M. For example, in Fig. 8, the principal instability from n ¼ 2 vanishes when U ¼ 45�.

5.3. Simultaneous rotating and non-rotating springs

An interesting related problem is that of a ring supported with fixed discrete spring supports simultaneously
subjected to parametric excitation from multiple rotating spring-sets. Planetary gear systems in a fixed ring
configuration are a good example, where the bolts that arrest the ring gear are represented by the fixed springs,
and the ring-planet mesh stiffnesses are represented by the rotating spring-sets. Certain bearing races are
another example.

The equation of motion for this problem is similar to Eq. (4) as given below:

q2

qt2
u� u00ð Þ � uVI þ 2uIV þ u00

� �
þ

XM
j¼1

ðĉ1juþ ĉ2ju
0Þdðy� f̂jÞ

n o"
�

q
qy

XM
j¼1

ðĉ3juþ ĉ4ju
0Þdðy� f̂jÞ

n o#

þ 2pe
XM
j¼1

ðc1juþ c2ju
0Þdðy� vspt� fjÞ

n o"
�

q
qy

XM
j¼1

ðc3juþ c4ju
0Þdðy� vspt� fjÞ

n o#
¼ 0, ð36Þ

where

ĉ1j ¼
1

kb

ðk̂1j cos
2b̂j þ k̂2j sin

2b̂jÞ; ĉ2j ¼ ĉ3j ¼
1

kb

ðk̂1j � k̂2jÞ cos b̂j sin b̂j,

ĉ4j ¼
1

kb

ðk̂1j sin
2b̂j þ k̂2j cos

2b̂jÞ
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are the fixed spring-set coefficients and c1j ; c2j ; c3j ; c4j are the rotating spring-set coefficients defined in Eq. (5).
Both the fixed and rotating spring-sets represent the most general discrete spring loading, each consisting of
two springs in perpendicular directions at some orientation angle. Assuming that the stiffnesses of the rotating
springs are small compared to the bending stiffness of the ring and capturing this by the quantity e as before,
the problem is formulated such that e ¼ 0 represents the vibration of a ring on fixed spring supports.

The vibrations of a ring on general elastic foundation have been studied using perturbation methods, and as
a special case, the natural frequencies and vibration modes of rings on discrete spring supports were obtained
[12]. For a ring on Mf identical, equally spaced discrete spring-sets (called symmetric fixed spring-sets), the
degenerate natural frequencies of the n nodal diameter mode split only if

n ¼

sMf

2
; for evenMf

sMf ; for oddMf ;

8<
: s ¼ 1; 2; 3; . . . (37)

The fixed spring-sets alter the modal properties of the non-parametrically excited system (e ¼ 0) and hence
affect the parametric instabilities. Closed-form analytical solutions using perturbation techniques were
attempted but proved too cumbersome. The problem is investigated numerically. Because this system cannot
be cast in a time-invariant form by a suitable choice of reference frame, Floquet theory is used to determine
the stability of the time-varying system. As discussed previously, Galerkin discretization of Eq. (36) yields a
periodic time-varying state matrix form, and the monodromy matrix eigenvalues dictate the system stability.

The 2 and 3 nodal diameter mode instabilities for a ring with one rotating radial spring and two identical,
equally spaced (symmetric) fixed radial springs are shown in Fig. 9. Comparing with Fig. 2, the fixed springs
cause parametric instability regions to split. A summary of key results is presented in Table 1. The first column
gives the nodal diameters considered for studying parametric instabilities. The second column states whether
parametric instability occurs when only rotating springs are present without fixed springs (Eqs. (30) and (31)).
The third column states whether the ring natural frequencies split when only symmetric fixed springs are
present without rotating ones (Eq. (37)), and the split natural frequencies are shown. The last two columns
give the excitation frequencies (spring-set rotation speeds vsp) around which parametric instabilities are
expected to occur when rotating and fixed spring-sets are considered together. These are obtained by applying
Eq. (15) to the split natural frequency modes. These values are confirmed by the results in Fig. 9 (where high
Table 1

Spring rotation speeds where parametric instability regions occur with one radial rotating spring with k11 ¼ 0; k21 ¼ k; b1 ¼ 0� and two

radial symmetric fixed springs with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�

Nodal diameter ðm; nÞ One radial rotating spring Two symmetric fixed radial

springs pm

Predicted instabilities

pm þ pn

mþ n

� 	
;

pm þ pn

m� nj j

� 	

2 Principal: Yes Splits: (2.68+2.68)/4 ¼ 1.34

2.68, 3.21 (2.68+3.21)/4 ¼ 1.47

(3.21+3.21)/4 ¼ 1.61

3 Principal: Yes Splits: (7.58+7.58)/6 ¼ 2.53

7.58, 7.82 (7.58+7.82)/6 ¼ 2.57

(7.82+7.82)/6 ¼ 2.61

2,3 Combination: Yes (2.68+7.58)/5 ¼ 2.05

(2.68+7.58)/1 ¼ 10.26

(2.68+7.82)/5 ¼ 2.10

(2.68+7.82)/1 ¼ 10.50

(3.21+7.58)/5 ¼ 2.16

(3.21+7.58)/1 ¼ 10.79

(3.21+7.82)/5 ¼ 2.21

(3.21+7.82)/1 ¼ 11.03
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Fig. 10. Parametric instability regions for one radial rotating spring with k11 ¼ 0; k21 ¼ k;b1 ¼ 0� and three radial symmetric fixed springs

with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�.
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Fig. 9. Parametric instability regions for one radial rotating spring with k11 ¼ 0; k21 ¼ k;b1 ¼ 0� and two radial symmetric fixed springs

with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�.
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vsp combination instabilities of the second kind are not shown). Similar results are presented for the case of one
rotating radial spring with three symmetric fixed radial springs (Fig. 10, Table 2) and for the case of two
symmetric rotating radial springs with two symmetric fixed radial springs (Fig. 11, Table 3).

The degenerate natural frequencies of a free ring split depending on the arrangement of the fixed spring-sets
and are governed by Eq. (37). The existence of parametric instabilities (principal and combination) depend
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Table 2

Spring rotation speeds where parametric instability regions occur with one radial rotating spring with k11 ¼ 0; k21 ¼ k; b1 ¼ 0 and three

radial symmetric fixed springs with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�

Nodal diameter ðm; nÞ One radial rotating spring Three symmetric fixed radial

springs pm

Predicted instabilities

pm þ pn

mþ n

� 	
;

pm þ pn

m� nj j

� 	

2 Principal: Yes No split: 3.09 1.55

3 Principal: Yes Splits: 7.58, 7.95 2.53, 2.59, 2.65

2,3 Combination: Yes 2.14, 2.21, 10.67, 11.04
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Fig. 11. Parametric instability regions for two symmetric radial rotating springs with k1j ¼ 0; k2j ¼ k;bj ¼ 0� and two radial symmetric

fixed springs with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�.

Table 3

Spring rotation speeds where parametric instability regions occur with two symmetric radial rotating springs with k1j ¼ 0; k2j ¼ k; bj ¼ 0�

and two radial symmetric fixed springs with k̂1j ¼ 0; k̂2j ¼ 2pkb; b̂j ¼ 0�

Nodal diameter ðm; nÞ One radial rotating spring Two fixed radial springs pm Predicted instabilities

pm þ pn

mþ n

� 	
;

pm þ pn

m� nj j

� 	

2 Principal: Yes Splits: 2.68, 3.21 1.34, 1.47, 1.61

3 Principal: Yes Splits: 7.58, 7.95 2.53, 2.57, 2.61

2,3 Combination: No —
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only on the arrangement of the rotating spring-sets, and they are governed by Eqs. (30) and (31). If the natural
frequency of a particular nodal diameter mode splits because of the fixed spring-sets, then the principal as well
as combination instability regions (if they exist, see the (2,3) combination instability in Table 3) associated
with that nodal diameter also split.
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6. Conclusions

In-plane bending vibrations of a stationary ring are parametrically excited when subject to multiple,
rotating spring-sets of arbitrary stiffness and orientation. Parametric instability boundaries are obtained
analytically as closed-form expressions using a first-order perturbation method. These analytical results
compare well with numerical results for a practically meaningful range of the perturbation parameter. Two
different methods are used for numerical verification. While both methods yield identical results, one of them
is much less computationally expensive.

Although there is essentially one independent excitation frequency, namely the spring-set rotation speed vsp,
it is coupled to the nodal diameters m; n by projections of the spring force onto the vibration modes in
Galerkin discretization. As a result, the modal coordinate equations have the parametric excitation
frequencies ðmþ nÞvsp and ðm� nÞvsp. This generates additional instabilities. Summation combination
instabilities of two kinds occur corresponding to two different values of vsp: one at lower frequency ðpm þ

pnÞ=ðmþ nÞ and another at higher frequency ðpm þ pnÞ=ðm� nÞ. Difference type instabilities do not exist for
this problem.

The stiffness, orientation, and relative spacing between spring-sets govern the occurrence and width of the
instability regions. Equally spaced, identical spring-sets and diametrically opposed, identical spring-sets are
shown to suppress several of the instabilities. Simple rules relating the nodal diameters of the suppressed
instabilities and the number of spring-sets are stated. This result has practical implications and demonstrates
the advantages symmetry can play in physical systems.

Instability results for a ring with simultaneous fixed and rotating spring-sets appear like the superposition of
two individual problems, one with only fixed spring-sets, and another with only rotating spring-sets. It is
previously known that the degenerate natural frequencies of a ring with only fixed spring-sets split depending
on the spring-set parameters (number and relative spacing). For the combined problem, parametric instability
regions that occur due to rotating spring-sets in the absence of fixed supports are further split into multiple
regions according to how the fixed spring-sets split the natural frequencies.
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